ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Stange, H. Yeom, B. Semerau, K. Sridharan, M. Corradini
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 286-301
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A16980
Articles are hosted by Taylor and Francis Online.
Pool boiling critical heat flux (CHF) measurements have been performed on stainless steel and zirconium wires in nanofluids consisting of oxide nanoparticles (7 to 250 nm) dispersed in water as well as in high-purity water after coating these wires with a variety of materials and methods. For the nanofluids study, nanoparticles of titania, alumina, zirconia, and yttria-stabilized zirconia (YSZ) were investigated for various sizes and concentrations. Results showed improvements in CHF in the range of 50% to 100%, with titania and zirconia exhibiting the highest and the lowest levels of improvement, respectively. Wires were coated separately with the same oxide nanoparticle materials, as well as pure titanium nanoparticles, using the electrophoretic deposition (EPD) technique and by nanofluid boiling. EPD coatings yielded superior and more consistent improvements in CHF values in clean water, suggesting that this could be a more practical approach than using nanofluids. Coating uniformity plays an important role in dictating the levels of CHF enhancement. In all cases, titania provided for high levels of improvement, while YSZ showed similarly high levels of improvement in some cases. Pure titanium coatings exhibited lower levels of improvement, indicating qualitatively that the lower wettability on metallic substrates (as compared to oxides) may play a role in dictating CHF improvements. Titanium, however, exhibits better adhesion to metallic substrates than do oxides, which is an important property for applications in a reactor environment. Given this, the improvements in CHF achieved by titanium coatings were sufficient to justify further study.