ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Karin Rudman, Patricia Dickerson, Darrin Byler, Robert McDonald, Harn Lim, Pedro Peralta, Chris Stanek, Kenneth McClellan
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 145-154
Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fuel Cycle and Management | doi.org/10.13182/NT13-A16426
Articles are hosted by Taylor and Francis Online.
The oxygen content during the intermediate and final stages of sintering can have a strong effect on the microstructural evolution of oxide fuels. Two depleted urania (d-UO2.0 and d-UO2.14) samples, sintered up to a theoretical density of 90%, were serial sectioned using a focused ion beam and characterized with electron backscatter diffraction (EBSD). The EBSD data were used to make three-dimensional reconstructions of the microstructures to evaluate their characteristics at an intermediate stage of sintering. The oxygen content was found to affect grain shape and grain boundary (GB) mobility, as curved and elongated grains were observed in UO2.0, as well as stronger pore-GB interactions, which is an indication that microstructure was less evolved in UO2.0. Both samples presented a similar fraction ([approximate]20%) of special, coincident site lattice boundaries, with larger amounts of Σ3n GBs, and a rather large fraction of Σ11 GBs for UO2.14. Crystallographic GB planes were also determined to study the distributions of all GB parameters. The UO2.0 sample had a large fraction of GB planes close to the Σ3 twinning planes, which suggests that lower-energy interfaces are used to minimize energy in this sample, potentially due to lower overall GB mobility as compared to UO2.14.