ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. C. Witt, R. F. Bradley
Nuclear Technology | Volume 43 | Number 2 | April 1979 | Pages 244-258
Technical Paper | The Back End of the Light Water Reactor Fuel Cycle / Fuel Cycle | doi.org/10.13182/NT79-A16315
Articles are hosted by Taylor and Francis Online.
One alternative for closing the nuclear fuel cycle is efficient, high decontamination separation of uranium and plutonium and fabrication of a Pu-U mixed-oxide fuel Detailed flowsheets were prepared by Savannah River Laboratory for a conceptual 10 MT/day reprocessing facility. The generation of liquid waste and the associated liquid waste handling facilities for the reprocessing plant were defined. Over 40 individual waste streams were identified. The reference facility generates 6.4 m3 (1700 gal) of high-level liquid waste (HLLW) per day, which is converted to 0.5 m3 (130 gal) of glass contained in three packages, each 0.3 m (12 in.) in diameter × 3 m (10 ft) high. Each operating day, the process converts 2.9 m3 (775 gal) of concentrated intermediate-level liquid waste (ILLW) to 4 m3 (1050 gal) of cemented solid in 21 carbon steel drums. Large-scale underground tank storage of liquid waste is eliminated by prompt solidification of the HLLW and ILLW. Each container of glass contains 30 kW nuclear decay heat and must be stored in water for an interim period prior to shipment to a federal repository.