ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
E. A. Grimm
Nuclear Technology | Volume 43 | Number 2 | April 1979 | Pages 146-154
Technical Paper | The Back End of the Light Water Reactor Fuel Cycle / Fuel Cycle | doi.org/10.13182/NT79-A16306
Articles are hosted by Taylor and Francis Online.
General Electric (GE) experience in operation of the Morris spent fuel storage facility, which now contains over 300 Mg of both boiling water reactor (BWR) and pressurized water reactor spent fuel, confirms that receipt, handling, and storage of spent fuel can be accomplished safely with negligible impact on the environment or the operation itself. Basin water treatment is accomplished with disposable powdered resins applied to a precoated filter-demineralizer unit, and special applications of Zeolites aid in maintaining radiocobalt and radiocesium concentrations to <4 × 10−4 μCi/ml in the basin water. No gaseous radioisotopes from damaged or leaking fuel have been observed, and no significant increases in radioactivity or loss of cladding integrity have been observed during fuel handling and storage. GE has utilized this experience to design an expansion of the Morris basin and to design Boral-poisoned, high-density, stainless-steel storage modules for BWR reactor pools. These free-standing modules store BWR fuel on 165.1-mm (6.5-in.) center spacing, and a sliding low-friction support system limits the seismic loads applied to the fuel. Application of this fuel storage experience has permitted expansion of storage capacity for spent fuel at Morris and at BWR reactors, permitting continued operation until federal programs for long-term storage have been clarified and implemented.