ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. L. DePoorter, C. K. Rofer-DePoorter, S. W. Hayter
Nuclear Technology | Volume 43 | Number 2 | April 1979 | Pages 132-135
Technical Paper | The Back End of the Light Water Reactor Fuel Cycle / Fuel Cycle | doi.org/10.13182/NT79-A16304
Articles are hosted by Taylor and Francis Online.
U(IV) can be photochemically produced in tri-n-butyl phosphate solutions from uranyl nitrate and used to reduce Pu(IV). Nitrite production can be controlled by filtering out light having wavelengths of <350 nm and by keeping the temperature of the reaction mixture below 10°C. Another product of the photolysis, di-n-butyl phosphate, can interfere with the reduction, but no effect was apparent in our experiments. Conventional solvent cleanup procedures should remove photolysis side products. The application of this process to the reprocessing of nuclear fuel would require commercially available light sources that can be located outside the hot zone of the plant and a reactor vessel with windows within the hot zone.