ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Don M. Parkin, Donald G. Schweitzer
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 108-114
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16279
Articles are hosted by Taylor and Francis Online.
Multifilamentary composite wires of Nb Ti and Nb3Sn have been irradiated at 60 ± 5°C with fast neutrons to fluences of 6 × 1019 n/cm2. Measurements of the superconducting critical current, Ic , as a function of transverse field show that the NbTi wires are only moderately affected by neutron irradiation. At a fluence of 6 × 1019 n/cm2, Ic (40 kG) is 82% of the unirradiated value. The Nb3Sn composites undergo a catastrophic reduction in Ic with an apparent threshold at a fluence of 2 to 3 × 1018 n/cm2. Between 2 to 3 × 1018 and 1.1 × 1019 n/cm2, Ic (40 kG) has been reduced to 4% of the unirradiated value. At a fluence of 6×1019 n/cm2, the upper critical field of Nb3Sn has been reduced from 240 kG to 9 ± 0.5 kG. The corresponding Tc has been decreased from 16.4 to 6°K. Annealing of Nb3Sn samples irradiated to 1.1 × 1019 n/cm2 produces only 19% recovery in Ic after h at 400°C.