ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
T. G. Godfrey, D. L. McElroy, Z. L. Ardary
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 94-107
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16278
Articles are hosted by Taylor and Francis Online.
The thermal conductivity, λ, of three samples of oriented fibrous carbon insulation of possible interest to fusion reactors was measured from 300 to 1300°K in a radial heat-flow apparatus. Samples of 0.18 g/cm3 density were prepared by a vacuum filtration process from carbon fibers and powdered phenolic resin and were characterized after carbonization. The λ of these low-density composites depended on both the heat treatment temperature and the fiber orientation. For samples heat treated at 1575°K, the room-temperature λ perpendicular to the planes of fibers was ∼0.5 mW/(cm °K) and was three times as high in the direction parallel to the planes. At 1000°K, the λ in both directions had doubled, primarily because of the positive dλ/dT of the amorphous carbon fibers. Material heat treated at 2775°K had a significantly higher room-temperature λ and a negative dλ/dT, indicating that a slight degree of ordering or graphiti-zation had occurred in the fibers during heat treatment. At high temperatures, the λ of all three samples increased markedly because of radiative heat transport.