ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
G. L. Kulcinski, R. G. Brown, R. G. Lott, P. A. Sanger
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 20-35
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16271
Articles are hosted by Taylor and Francis Online.
A detailed analysis of the radiation damage problems to be expected in a specific D-T fueled fusion reactor has been conducted. The system examined is the 5000-MW(th) University of Wisconsin Tokamak reactor (UWMAK), which is constructed of 20% cold-worked Type-316 stainless steel and operated at a maximum temperature of 500°C and a neutron wall loading of 1.25 MW/m2. The major radiation damage problem appears to be the loss in ductility; that is, the uniform elongation of the Type-316 stainless steel in the UWMAK-I first wall may fall to <0.5% after one to two years of operation. Another serious problem will be the void-induced swelling in the steel. Based on current design equations, the swelling in the steel of the first wall will exceed the design limit of 10% in approximately five years of operation. The wall erosion rate due to neutron and charged-particle sputtering, coupled with exfoliation due to blistering, is calculated to be 0.22 mm/yr. Finally, calculations reveal that the radiation damage problems in the superconducting magnets can be incorporated into the design without difficulty. The integral wall-loading limits for embrittlement, swelling, wall erosion, and magnet damage in UWMAK are calculated to be 2, 6, 25, and 100 MW yr/m2, respectively.