ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
G. L. Kulcinski, R. G. Brown, R. G. Lott, P. A. Sanger
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 20-35
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16271
Articles are hosted by Taylor and Francis Online.
A detailed analysis of the radiation damage problems to be expected in a specific D-T fueled fusion reactor has been conducted. The system examined is the 5000-MW(th) University of Wisconsin Tokamak reactor (UWMAK), which is constructed of 20% cold-worked Type-316 stainless steel and operated at a maximum temperature of 500°C and a neutron wall loading of 1.25 MW/m2. The major radiation damage problem appears to be the loss in ductility; that is, the uniform elongation of the Type-316 stainless steel in the UWMAK-I first wall may fall to <0.5% after one to two years of operation. Another serious problem will be the void-induced swelling in the steel. Based on current design equations, the swelling in the steel of the first wall will exceed the design limit of 10% in approximately five years of operation. The wall erosion rate due to neutron and charged-particle sputtering, coupled with exfoliation due to blistering, is calculated to be 0.22 mm/yr. Finally, calculations reveal that the radiation damage problems in the superconducting magnets can be incorporated into the design without difficulty. The integral wall-loading limits for embrittlement, swelling, wall erosion, and magnet damage in UWMAK are calculated to be 2, 6, 25, and 100 MW yr/m2, respectively.