ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
L. F. Parsly
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 472-485
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16259
Articles are hosted by Taylor and Francis Online.
The spray program conducted at the Nuclear Safety Pilot Plant in 1967–1970 is summarized. Sprays have been proposed as a means for removing fission products from reactor containment building atmospheres following a loss-of-coolant accident. The problem was dealt with in three parts: removal of elemental iodine, removal of organic iodides, and removal of particles. Thirty iodine removal experiments were performed using borax, borax plus thiosulfate, and boric acid. Both borax and borax-thiosulfate were highly effective in removing elemental iodine. Boric acid is much more effective than expected. Fifteen methyl iodide removal experiments were performed. Only borax-thiosulfate at elevated temperatures removed methyl iodide at a significant rate. Extrapolation of the data to a large PWR indicates the dose reduction factor would be 1.1 for the flow, drop size, and reagent concentration normally specified. This can be improved by increasing flow and/or concentration or by reducing drop size. Fifteen particle removal experiments have been done. These show that phenomena associated with steam condensation make the major contribution to removing particles. The results indicate that sprays will remove particles effectively.