ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
H. E. Zittel, T. H. Row
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 436-443
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16253
Articles are hosted by Taylor and Francis Online.
It has been proposed that, following a pressurized water reactor (PWR) loss-of-coolant accident (LOCA), sprays be used for the twofold purpose of pressure suppression and fission product (largely 131I) removal. These proposed sprays must operate under severe conditions of high energy radiation (∼3 × 108 rads) and temperature (∼135°C). Studies have been carried out on a series of such sprays to ascertain their stability under these conditions. It was found that several of the solutions exhibit satisfactory behavior under accident conditions while others were discarded from consideration because of either thermal and/or radiation instability. The two sprays found to demonstrate acceptable stabilities under test conditions are the basic borate (0.15N NaOH-3000 ppm B) and basic borate thiosulfate (1 wt% Na2S2 O3-0.15N NaOH-3000 ppm B). However, even these demonstrate a radiolytic gas generation (H2) sufficient to be a possible safety hazard. Various studies have been carried out to establish G(H2) values and/or equilibrium radiolytic gas concentrations. Other studies were carried out on possible spray solution interaction with reactor containment metals and alloys.