ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
D. D. Malinowski, L. F. Picone
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 428-435
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16252
Articles are hosted by Taylor and Francis Online.
The removal of gaseous elemental iodine from the vapor stream entering an ice condenser unit was studied for the effects of vapor composition, ice additives, ice loading, vapor temperature, flow channels, flow characteristics, and iodine concentration. It was found that alkaline additives enhance the retention of iodine in the ice melt by hydrolysis reactions which convert the iodine to nonvolatile, soluble forms of iodide and iodate. The effect of the iodine content in the steam-air mixtures at the levels studied was found to be small. The iodine removal was strongly influenced by the fraction of air in the steam-air vapor mixture. Several tests using methyl iodide instead of elemental iodine indicated that the ice would not be an efficient means for removal of organic halides.