An alternate method to that of representing the drop size spectrum by a mean drop diameter in an iodine removal analysis of the containment spray system is presented. A discrete drop size distribution, which is obtained from a fit of a continuous distribution function to the drop size spectrum observed for the nozzles employed in the spray sys tem is used. A model for the calculation of the changes in this distribution due to drop coalescence and condensation of steam on the spray drops is derived. The results obtained from this analysis show that consideration of the drop size spectrum, condensation, and coalescence in the analysis of the spray system does not degrade the iodine removal effectiveness calculated for a typical Westinghouse reactor containment.