ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. C. Hung, V. K. Dhir
Nuclear Technology | Volume 92 | Number 3 | December 1990 | Pages 396-410
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT90-A16241
Articles are hosted by Taylor and Francis Online.
Conjugate heat transfer associated with the flow of sodium in an annulus in the decay heat removal mode of advanced fast reactors is studied. The coupled governing equations of momentum and energy are solved numerically and analytically. The TEACH code with the SIMPLE algorithm has been used for the internal forced flow and wall regions. For turbulent flow, a k-ε model is employed. The integral method is used for natural convection, and one-dimensional analysis is performed for the stratified flow over and underneath the redan. Results are presented for the two-dimensional temperature field in the fluids and the solid for both laminar and turbulent flows. A substantial amount of energy exchange between the hot or cold pool and the sodium flowing in the annulus occurs via the liner. As a result, convective boundary layers form along the liner. The convective motion leads to a stratified flow along the redan. In the absence of a core barrel extending into the hot pool, the fluid stratified in the hot pool, for certain core power and flow conditions, can drain down the radial blanket or be entrained by the fluid exiting the core. In contrast to behavior with an insulated liner, the heat transfer across the liner reduces the average temperature drop of the sodium flowing in the annulus, which in turn leads to a reduction in the hydrostatic head available for driving the fluid through the core.