ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. C. Hung, V. K. Dhir
Nuclear Technology | Volume 92 | Number 3 | December 1990 | Pages 396-410
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT90-A16241
Articles are hosted by Taylor and Francis Online.
Conjugate heat transfer associated with the flow of sodium in an annulus in the decay heat removal mode of advanced fast reactors is studied. The coupled governing equations of momentum and energy are solved numerically and analytically. The TEACH code with the SIMPLE algorithm has been used for the internal forced flow and wall regions. For turbulent flow, a k-ε model is employed. The integral method is used for natural convection, and one-dimensional analysis is performed for the stratified flow over and underneath the redan. Results are presented for the two-dimensional temperature field in the fluids and the solid for both laminar and turbulent flows. A substantial amount of energy exchange between the hot or cold pool and the sodium flowing in the annulus occurs via the liner. As a result, convective boundary layers form along the liner. The convective motion leads to a stratified flow along the redan. In the absence of a core barrel extending into the hot pool, the fluid stratified in the hot pool, for certain core power and flow conditions, can drain down the radial blanket or be entrained by the fluid exiting the core. In contrast to behavior with an insulated liner, the heat transfer across the liner reduces the average temperature drop of the sodium flowing in the annulus, which in turn leads to a reduction in the hydrostatic head available for driving the fluid through the core.