ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Dong-Seong Sohn, Gordon E. Kohse, David M. Parks, Otto K. Harling
Nuclear Technology | Volume 92 | Number 3 | December 1990 | Pages 383-388
Technical Paper | Material | doi.org/10.13182/NT90-A16239
Articles are hosted by Taylor and Francis Online.
Considerable effort is currently being expended to develop mechanical property tests for various miniature specimens. Bend tests of thin 3-mm-diam disks (standard transmission electron microscopy specimens) have been used by various workers. A miniaturized disk bend test (MDBT) using a 3-mm-diam x 0.25-mm-thick disk is described and recent progress in extracting uniaxial yield stress values from bend test data is discussed. The method is based on the existence of an initial linear region in the load/deflection curve generated by the bend test. A strong relationship between the load at deviation from linearity and the uniaxial yield stress is found. By simulating observed load/deflection curves using a finite element stress/strain analysis, yield stresses can be calculated from MDBT data. Results using our approach to MDBT for a range of materials are presented, and good agreement with uniaxial tensile test data is shown. These results for the small specimen volume required for MDBT offer interesting possibilities for monitoring the mechanical properties of in-service structures, as well as for minimizing test volumes and specimen radioactivities in such programs as alloy development for irradiation performance in fusion reactors.