ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Brent J. Lewis, Fernando C. Iglesias, David S. Cox, Elena Gheorghiu
Nuclear Technology | Volume 92 | Number 3 | December 1990 | Pages 353-362
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT90-A16236
Articles are hosted by Taylor and Francis Online.
Based on a number of in- and out-of-reactor experiments at the Chalk River Nuclear Laboratories, a physically based model has been developed to predict the activity release of radioactive noble gases from defected UO2 fuel elements during steady-state reactor conditions. This model has been interfaced with the ELESIM fuel-performance code, and verified against all-effects experiments in the National Research Experimental reactor with defected elements containing various sizes and types of sheath failure, and operating at linear powers ranging from 22 to 67 kW/m up to a maximum burnup of 278 MW.h/kg U. The model accounts for various interrelated phenomena that can affect the prediction of fuel temperature and fission product release. The transport of fission products in the fuel matrix is described by a diffusion mechanism. The kinetics of fuel oxidation are treated as a rate-determining reaction at the fuel/steam interface. Such oxidation can lead to a degradation of the fuel thermal conductivity, and a direct enhancement of the rare gas diffusivity in the fuel matrix. Migration of fission products along the fuel-to-sheath gap to the defect site is also modeled by a diffusion process.