ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
John C. Walton
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 114-123
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A16227
Articles are hosted by Taylor and Francis Online.
Disposal of nuclear waste by deep underground burial is being considered by the United States and many other countries. In many cases, the waste will be encased in an engineered waste package made of metal, concrete, or other materials. The ability of these disposal systems to limit the migration of radionuclides depends on a variety of factors, including the geochemical environment. If the waste package contains metallic parts, the corrosion reactions will dominate many aspects of the geochemistry in the immediate vicinity of a nuclear waste package. Some potential influences of metallic corrosion on the geochemical environment of the waste package are discussed. The corrosion reactions are a result of interaction or coupling of corrosion and geochemical processes. A generalized model is presented that describes the electrochemistry developed in corrosion cells and interaction with the surrounding geochemical environment. The model is first applied to laboratory data on crevice corrosion and then used to perform a parametric study. The results suggest that corrosion cells that lead to significant modifications to the geochemical environment are likely. The formation of corrosion cells around the waste package leads to large uncertainties concerning the geochemical environment in which radionuclide release rate and container corrosion will take place. Models and experiments of corrosion, waste form dissolution, and release rate need to take the expected uncertainty in geochemical environment into account.