ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Tsutomu Sakurai, Akira Takahashi, Niroh Ishikawa, Yoshihide Komaki
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 99-107
Technical Paper | Enrichment and Reprocessing | doi.org/10.13182/NT91-A16225
Articles are hosted by Taylor and Francis Online.
To properly control radioiodine (129I) when reprocessing nuclear fuels, it is important to understand the interaction between iodine and the insoluble residue produced during the dissolution of spent fuels. Simulated spent-fuel pellets (∼1 g each) equivalent to spent fuel with a burnup of 5% fima were dissolved in 4.1 M HNO3 or a simulated spent-fuel solution to examine this interaction and the material balance of iodine. In dissolution in 4.1 M HNO3, 2 to 5% of the iodine in the pellet is conveyed to the insoluble residue (8 ± 1 mg), 1 to 5% remains in solution, and the balance volatilizes into the off-gas. The process that incorporates iodine into the residue is the formation of slightly soluble iodides, such as PdI2 and AgI, on the surface of the residue. The quantity of iodine in the residue averages 1.1 ± 0.5 µg I/mg of residue. Pellet dissolution in simulated spent-fuel solutions with a uranium concentration of ≧170 g U/ℓ and corresponding amounts of fission product elements causes a marked increase in the amount of residue and a significant increase in the amount of iodine involved. This phenomenon is due to the secondary precipitation of some metal molybdates. The PdI2 and AgI in the residue are in equilibrium with Pd2+, Ag+, and I- in the solution. The I- can be oxidized into I2 in a hot nitric acid solution bubbled with NO2. The action of NO2 causes part of the iodine in the residue to be eluted into the solution and then volatilized into the off-gas during the operation to expel iodine () from the solution. A process consisting of (a) heating of the residue in a -concentrated HNO3 at 100°C and (b) introducing NO into the solution at 100°C will transfer 50 to 90% of the iodine in the residue to the gas phase. The remaining iodine is probably inside the residue as it is difficult to remove.