ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tsutomu Sakurai, Akira Takahashi, Niroh Ishikawa, Yoshihide Komaki
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 99-107
Technical Paper | Enrichment and Reprocessing | doi.org/10.13182/NT91-A16225
Articles are hosted by Taylor and Francis Online.
To properly control radioiodine (129I) when reprocessing nuclear fuels, it is important to understand the interaction between iodine and the insoluble residue produced during the dissolution of spent fuels. Simulated spent-fuel pellets (∼1 g each) equivalent to spent fuel with a burnup of 5% fima were dissolved in 4.1 M HNO3 or a simulated spent-fuel solution to examine this interaction and the material balance of iodine. In dissolution in 4.1 M HNO3, 2 to 5% of the iodine in the pellet is conveyed to the insoluble residue (8 ± 1 mg), 1 to 5% remains in solution, and the balance volatilizes into the off-gas. The process that incorporates iodine into the residue is the formation of slightly soluble iodides, such as PdI2 and AgI, on the surface of the residue. The quantity of iodine in the residue averages 1.1 ± 0.5 µg I/mg of residue. Pellet dissolution in simulated spent-fuel solutions with a uranium concentration of ≧170 g U/ℓ and corresponding amounts of fission product elements causes a marked increase in the amount of residue and a significant increase in the amount of iodine involved. This phenomenon is due to the secondary precipitation of some metal molybdates. The PdI2 and AgI in the residue are in equilibrium with Pd2+, Ag+, and I- in the solution. The I- can be oxidized into I2 in a hot nitric acid solution bubbled with NO2. The action of NO2 causes part of the iodine in the residue to be eluted into the solution and then volatilized into the off-gas during the operation to expel iodine () from the solution. A process consisting of (a) heating of the residue in a -concentrated HNO3 at 100°C and (b) introducing NO into the solution at 100°C will transfer 50 to 90% of the iodine in the residue to the gas phase. The remaining iodine is probably inside the residue as it is difficult to remove.