ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mark A. Chaiko, Michael J. Murphy
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 44-55
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A16220
Articles are hosted by Taylor and Francis Online.
The Compartment Transient Temperature Analysis Program (COTTAP) was developed by the Pennsylvania Power & Light Company for postaccident boiling water reactor (BWR) secondary containment thermal analysis. The code makes use of previously developed implicit temporal integration methods and sparse matrix inversion techniques to allow modeling of an entire BWR secondary containment. Investigations were made with a model consisting of 121 compartments and 767 heat-conducting slabs. The simulation presented involves the numerical integration of 20 101 ordinary differential equations over a 30-h simulation period. Two hours of CPU time were required to carry out the calculation on an IBM 3090 computer. The COTTAP code considers natural convection and radiation heat transfer between compartment air and walls through a detailed finite difference solution of the slab conduction equations. Heat addition from hot piping and operating equipment, and cooling effects associated with ventilation flows and compartment heat removal units are also included. Additional capabilities of COTTAP include modeling of compartment heatup resulting from steamline breaks and simulation of natural circulation cooling in compartments with flow paths at differing elevations.