ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Mark A. Chaiko, Michael J. Murphy
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 44-55
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A16220
Articles are hosted by Taylor and Francis Online.
The Compartment Transient Temperature Analysis Program (COTTAP) was developed by the Pennsylvania Power & Light Company for postaccident boiling water reactor (BWR) secondary containment thermal analysis. The code makes use of previously developed implicit temporal integration methods and sparse matrix inversion techniques to allow modeling of an entire BWR secondary containment. Investigations were made with a model consisting of 121 compartments and 767 heat-conducting slabs. The simulation presented involves the numerical integration of 20 101 ordinary differential equations over a 30-h simulation period. Two hours of CPU time were required to carry out the calculation on an IBM 3090 computer. The COTTAP code considers natural convection and radiation heat transfer between compartment air and walls through a detailed finite difference solution of the slab conduction equations. Heat addition from hot piping and operating equipment, and cooling effects associated with ventilation flows and compartment heat removal units are also included. Additional capabilities of COTTAP include modeling of compartment heatup resulting from steamline breaks and simulation of natural circulation cooling in compartments with flow paths at differing elevations.