ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Tetsuya Miyake, Kunihiko Takeda, Hatsuki Onitsuka, Toshinori Watanabe
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 116-123
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT86-A16208
Articles are hosted by Taylor and Francis Online.
Experiments and computer simulation show that the uranium enrichment factor in redox chromatography is determined substantially by electron exchange, isotope adsorption-desorption, and oxidation state adsorption-desorption equilibria. Computer simulation utilizing the theoretical model closely predicts the difference between the value of an enrichment factor derived from the solution equilibrium and that observed in the chromatographic isotope separation, which is attributable to a biased distribution of uranium ions between the solid and liquid phases and a nonequilibrium state in the separation column, thus allowing elucidation of the separation mechanism. A theoretical description of the central role of this enrichment factor in determining plant size and economics is presented.