ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Tetsuya Miyake, Kunihiko Takeda, Hatsuki Onitsuka, Toshinori Watanabe
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 116-123
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT86-A16208
Articles are hosted by Taylor and Francis Online.
Experiments and computer simulation show that the uranium enrichment factor in redox chromatography is determined substantially by electron exchange, isotope adsorption-desorption, and oxidation state adsorption-desorption equilibria. Computer simulation utilizing the theoretical model closely predicts the difference between the value of an enrichment factor derived from the solution equilibrium and that observed in the chromatographic isotope separation, which is attributable to a biased distribution of uranium ions between the solid and liquid phases and a nonequilibrium state in the separation column, thus allowing elucidation of the separation mechanism. A theoretical description of the central role of this enrichment factor in determining plant size and economics is presented.