Melt refining as a means of uranium decontamination of metallic wastes was examined. Samples of mild steel, contaminated with uranium, were melted by adding SiO2-CaO-Al2O3 ternary system fluxes. Various melting temperatures and times were used, and the uranium concentrations in the resulting ingots were determined. Flux, and hence slag, composition was found to influence the level of decontamination, but melting temperature and time had little effect. Using the most effective flux composition (10 SiO2-50 CaO-40 Al2O3), uranium concentration was lowered from a contamination level of 500 to 0.027 ppm, a value nearly that of the initial steel before contamination. When the ionic character of slag was defined using basicity [the mole ratio of basic oxide (CaO) to acidic oxide (SiO2 + Al2O3)], the optimum decontamination value was found near a basicity of 1.6. The slag anions of silicate or aluminate seemed to affect the uranium decontamination.