ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Chaitanyamoy Ganguly, Hans Langen, Erich Zimmer, Erich R. Merz
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 84-95
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT86-A16204
Articles are hosted by Taylor and Francis Online.
High-density ThO2-2% UO2 (233U) pellets are a strong candidate fuel for advanced pressurized heavy water reactors. A process flow sheet based on sol-gel microsphere pelletization has been developed for the first time for fabrication of high-density mixed-oxide pellets at relatively low compaction pressures (350 MPa) and low sintering temperatures (1773 K). The process avoids handling or generation of radioactive dusts and is suitable for remote fabrication of highly radiotoxic 233U-bearing oxide fuels. The external gelation of thorium process of the Jülich Nuclear Research Center has been used with three major modifications for preparation of ThO2− UO2 sol-gel microspheres, suitable for pelletization and sintering. First, a feed solution of lower molarity is used. Second, ∼1 wt% calcium nitrate is added in the heavy metal nitrate feed solution in order to have ∼0.4% CaO as a “sintering aid” in the subsequent mixed-oxide microspheres. Third, ∼30 g/ℓ carbon black are added in the sol prior to gelation. The pores formed in the sol-gel microspheres after burning off the carbon black particles reduce the crushing strength of the microspheres and facilitate pelletization. The sintered pellets thus prepared have high densities and uniformly distributed pores between 2 and 3 µm in size.