ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Robert E. Einziger, Sharon D. Atkin, David E. Stellrecht, V. Pasupathi
Nuclear Technology | Volume 57 | Number 1 | April 1982 | Pages 65-80
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A16187
Articles are hosted by Taylor and Francis Online.
Postirradiation studies on failure mechanisms of well-characterized pressurized water reactor rods were conducted for up to a year at 482, 510, and 571°C in limited air and inert gas atmospheres. No cladding breaches occurred even though the tests operated many orders of magnitude longer in time than the lifetime predicted by Blackburn’s analyses. The extended lifetime is due to significant creep strain of the Zircaloy cladding, which decreases the internal rod pressure. The cladding creep also contributes to radial cracks, through the external oxide and internal fuel-cladding chemical interaction layers, which propagated into and arrested in an oxygen stabilized alpha-Zircaloy layer. There were no signs of either additional cladding hydriding, stress corrosion cracking, or fuel pellet degradation. If irradiation hardening does not reduce the stress rupture properties of Zircaloy, a conservative maximum storage temperature of 400°C based on a stress-rupture mechanism is recommended to ensure a 1000-yr cladding lifetime.