ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
D. Haas, J. van de Velde, H. Braun
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 100-108
Technical Paper | Material | doi.org/10.13182/NT79-A16178
Articles are hosted by Taylor and Francis Online.
In the Rapsodie-I experiment, two bundles, each containing 34 fast breeder reactor fuel pins, have been irradiated up to a peak burnup of 10.6 at.% and to a peak fast fluence (E > 0.1 MeV) of 6.65 × 1026 n/m2. One of the main objectives of this experiment was to evaluate the mechanical behavior of a bundle with spacer grids. Two types of spacer grid designs have been tested: namely, a brazed ferrule grid design and a honeycomb spot-welded grid design. The grid material was in every case niobium-stabilized austenitic stainless steel type W.Nr. 1.4981 in the annealed condition. The density and the dimensional measurements carried out on the spacer grids revealed that the geometrical changes in the grids were almost entirely due to material void swelling. In some cases, however, mechanical interactions between grids and wrapper tubes and also between fuel pins and grid cells have been emphasized. These interactions had no detrimental influence on the in-pile bundle behavior. The postirradiation mechanical tests carried out on the honeycomb spacer grids showed that the mechanical properties of the grid cells have not been significantly altered by the irradiation. A decrease of the grid material Young’s modulus has been correlated with void swelling. It has been concluded that the spacer grids operated satisfactorily despite their severe loading conditions.