ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. A. Orth
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 63-74
Techinical paper | Chemical processing | doi.org/10.13182/NT79-A16175
Articles are hosted by Taylor and Francis Online.
Some experience in 233U-Th processing is available from past operations at government sites and may be of interest to the current reevaluation of thorium fuel cycles. In five separate campaigns between 1964 and 1970, the Savannah River Plant processed ∼240 tons (MT) of thorium, irradiated as aluminum-clad metal and oxide and recovered ∼580 kg of total uranium. Satisfactory processing routes were devised for a solvent extraction plant that normally processes enriched uranium and previously was a Purex plant. In the initial campaigns, a dilute tributyl phosphate (TBP) flowsheet recovered only uranium, and thorium was sent to waste. In later campaigns, a modified Thorex solvent extraction flowsheet recovered both uranium and thorium. Satisfactory processing required specific attention to the slow dissolving rate of ThO2, the presence of highly radioactive 233Pa, solvent extraction flowsheet constraints to avoid formation of two organic phases in the thorium-TBP systems, the ingrowth of gamma-emitting daughters of 232U, and 233U criticality.