ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
D. A. Orth
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 63-74
Techinical paper | Chemical processing | doi.org/10.13182/NT79-A16175
Articles are hosted by Taylor and Francis Online.
Some experience in 233U-Th processing is available from past operations at government sites and may be of interest to the current reevaluation of thorium fuel cycles. In five separate campaigns between 1964 and 1970, the Savannah River Plant processed ∼240 tons (MT) of thorium, irradiated as aluminum-clad metal and oxide and recovered ∼580 kg of total uranium. Satisfactory processing routes were devised for a solvent extraction plant that normally processes enriched uranium and previously was a Purex plant. In the initial campaigns, a dilute tributyl phosphate (TBP) flowsheet recovered only uranium, and thorium was sent to waste. In later campaigns, a modified Thorex solvent extraction flowsheet recovered both uranium and thorium. Satisfactory processing required specific attention to the slow dissolving rate of ThO2, the presence of highly radioactive 233Pa, solvent extraction flowsheet constraints to avoid formation of two organic phases in the thorium-TBP systems, the ingrowth of gamma-emitting daughters of 232U, and 233U criticality.