ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
J. Bogen, K.-H. Schüller
Nuclear Technology | Volume 38 | Number 1 | April 1978 | Pages 104-112
Technical Paper | Low-Temperature Nuclear Heat / Reactor | doi.org/10.13182/NT78-A16162
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are normally designed for operation with condensing turbines for pure electricity production. The rational use of primary energy demands the combined production of electricity and low-temperature heat, especially for regions with high population densities. The choice of the plant layout for combined generation of electricity and heat from nuclear power stations depends on the requirements of the electrical and district heating grids, on technological criteria of the process, as well as on economic criteria. A 3782 MJ/s pressurized water reactor (PWR) nuclear steam supply system is used as a basis for the combined production of electricity and heat produced by extracting steam from the low pressure turbines of the turbo-generator and by installing a separate heating turbine. There are no important technical changes necessary in a PWR plant, designed for electricity generation, when changing to the combined generation of electricity and heat. Since the additional equipment for district heating production is designed in detail, the additional plant costs can be estimated. The result shows that, for a heating capacity range of 349 to 1163 MJ/s, the additional plant costs are on the order of 1 to 5% of the total investment for a 1300-MW(electric) PWR power station for pure electricity production.