A system of two-component chemical agents is proposed for transforming heat with T ≈450 ± 50 K into chemical energy, as a means of storage and transportation, in the following manner:salt (soiid) + ammonia-derivate(vol)salt-amminate(sol) + ΔH specific enthalpy:ΔH ≅ 1.0 ÷ 1.3 MJ/kg of salt-amminate.The system is called SALAMO (for Salt/Ammonia), and the following boundary conditions have been arbitrarily chosen: 1. The primary source of heat is a light water reactor (LWR), with temperatures of Tmax = 530 K and Toptim = 400 ±20 K. 2. The heat energy bounded in chemical form is transported in railway wagons, in pressureless containers, at a near-ambient temperature. 3. Heat is delivered to the consumers at a temperature of 390 ± 10 K, with a power on the coldest days of at least 1 MW. This corresponds to a district having a population of several hundreds. The distance from the LWR can be as much as 100 km, although the optimum distance is 30 to 50 km. Heat can be stored for only short periods. Averaged over the whole year, the system provides 85 to 90% of the total space heating requirements, the remainder being covered by oil heating during the very coldest periods. 4. The LWRs supply the heat during their electrical off-peak periods, also during the winter. 5. Allowances are made for inherent redundancy. 6. The electrical energy for transportation over a distance of 100 km is not more than 2% of the total energy transported.