ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Grant R. Jones, Ilze Jones, Brian A. Gray, Bud Parker, Jon C. Coe, John B. Burnham, Neil M. Geitner
Nuclear Technology | Volume 25 | Number 4 | April 1975 | Pages 682-713
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A16126
Articles are hosted by Taylor and Francis Online.
The methodology for quantitative evaluation of visual impact considers the appearance and visual quality of a landscape setting as viewed from a series of representative viewpoints “before” and “after” the introduction of a nuclear facility. Procedures to select representative viewpoints are based an facility visibility from the surrounding area, viewing distance, observer position, and impacted viewing populations. A duplicate photo or slide taken from each representative viewpoint is touched up to portray the viewscape condition with the facility. The visual quality of each condition is then evaluated by applying the scaled measurements of intactness, vividness, unity, and importance of the major viewscape components, and these scores combined into a formula yielding a visual quality rating from 1 to 100. Total visual impact of a proposed facility is the sum of visual impacts measured at each representative viewpoint, with the difference between before and after conditions expressed in terms of percent of change modified by population viewing contact. An expression of the relative scarcity or uniqueness of the potentially impacted landscapes serves to protect remote areas and unique natural and cultural features.