ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Joseph M. Graf, Peter O. Strom
Nuclear Technology | Volume 25 | Number 4 | April 1975 | Pages 626-629
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A16118
Articles are hosted by Taylor and Francis Online.
In selecting a proper site for a nuclear power station, the consideration of radioactivity released in effluents can be handled in a straightforward manner using the U.S. Atomic Energy Commission’s proposed Appendix I to 10 CFR 50, which gives numerical guidelines for design objectives for meeting the criterion “as low as practicable” for radioactive material in light-water-cooled nuclear power reactor effluents. By relating the release of radioactive material, the site meteorological conditions, and site boundary distance through appropriate dose models, the suitability of a given site can be determined. “Rules of thumb” for comparing anticipated releases to design objectives can be constructed for rapid assessment using the maximum permissible concentration values of 10 CFR 20 as dose factors. These rules of thumb tend to underpredict the allowed releases except in the case of radiocesium in liquids. For gaseous releases, these rules of thumb can be made up in convenient nomogram form for a quick assessment of allowed releases based on local site meteorological conditions.