ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Brian F. Ives, Harry T. Cullinan, Jr., John Y. Yang
Nuclear Technology | Volume 18 | Number 1 | April 1973 | Pages 29-45
Technical Paper | Radiation | doi.org/10.13182/NT73-A16105
Articles are hosted by Taylor and Francis Online.
A theoretical and experimental investigation of a radioactive fluidized bed chemical reactor is described. The fluidized particles are composed of radio-strontium silicate. The chemical system is the conversion of toluene to benzotrichloride. Experimental work defines the variables affecting bed porosity versus throughput at high bed expansions where significant radiation deposition could be achieved. Homogeneous fluidization is achieved by developing a classification technique to obtain a batch of radioactive microspheres with a narrow size and density distribution. Experimental data obtained with a semi-batch reactor using beta rays from a Van de Graaff generator lead to the conclusion that the reaction proceeds according to -order kinetics. The axial-dispersed plug flow model for three consecutive reactions and -order kinetics results in four simultaneous nonlinear second-order ordinary differential equations. These equations with the appropriate boundary conditions are solved numerically using a finite difference technique. An economically optimum reactor design utilizing recycle is presented for the last part of the plant.