ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
W. W. Hudritsch
Nuclear Technology | Volume 18 | Number 1 | April 1973 | Pages 25-28
Technical Paper | Instrument | doi.org/10.13182/NT73-A16104
Articles are hosted by Taylor and Francis Online.
Self-powered neutron detectors are suitable for continuous flux measurements and were used to monitor some of Gulf General Atomic’s irradiation experiments in the Engineering Test Reactor in connection with the development of fuel for high temperature gas-cooled reactors. For the purpose of detector current data reduction, the special case of a rhodium detector is analyzed and explicit solutions for the neutron flux and neutron fluence are developed. The solutions describe the time-dependence of flux and fluence for detector irradiation times ≳1 h. Independent variables are the detector current and its time derivative, both of which are functions of time. Constants appearing in the equations are the neutron flux, the corresponding electrical current and its time derivative at the time of calibration, the decay constant of 104Rh (4.36 min), and the effective cross section for 103Rh(n,γ)104Rh reactions .