ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sang Woon Shin, Hee Cheon No
Nuclear Technology | Volume 73 | Number 3 | June 1986 | Pages 378-383
Technical Paper | Material | doi.org/10.13182/NT86-A16079
Articles are hosted by Taylor and Francis Online.
To investigate the denting phenomenon, the rates of corrosion occurring in simulated tube/support plate crevices were examined by using seven model boilers at 1.11 MPa. The model boilers were operated with all-volatile treatment (morpholine + hydrazine) with 15- and 100-ppm chloride concentrations constituting 10% FeCl2, 30% NaCl, and 60% CaCl2. It was found that corrosion rates increased with heat flux. A model was proposed to explain this observation, based on mechanisms that acid chloride is concentrated in the tube/support plate crevices. The model is expressed by the following equation for empty heated crevices: Good agreement was obtained by comparing the results predicted by the model with Brown’s data and the present data for empty heated crevices, and with Pathania’s data obtained at high heat flux. Based on the above equation, a model was developed to describe chloride concentration within the crevices versus heat flux for given condenser leakage rates in nuclear steam generators. Results predicted by the model show that a small increase in condenser leakage rates gives a considerable increase in chloride concentration within the crevices.