ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
J. C. Helton,* R. L. Iman, J. D. Johnson,+, C. D. Leigh
Nuclear Technology | Volume 73 | Number 3 | June 1986 | Pages 320-342
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A16075
Articles are hosted by Taylor and Francis Online.
An uncertainty and sensitivity analysis of the MAEROS model for multicomponent aerosol dynamics is presented. Analysis techniques based on Latin hypercube sampling and regression analysis are used to study the behavior of a two-component aerosol in a nuclear power plant containment for a transient accident with loss of alternating current power (i.e., a TMLB’ accident). Conditional on assumed ranges and distributions for selected independent variables (e.g., initial distributions and mass loadings for each component, temperature, pressure, shape factors), estimates are made for distributions of model predictions and for the independent variables that influence these predictions. The analysis indicated that, for the situation under consideration, variables related to agglomeration (e.g., dynamic shape factor, material density, agglomeration shape factor, and turbulence dissipation rate) tended to dominate the observed variability. For comparison, an analysis based on differential techniques is also given. Furthermore, a study of the effects on MAEROS predictions due to the number of particle size classes and the particle size class boundaries is presented. This analysis was performed as part of a project to develop a new system of computer codes (i.e., the MELCOR code system) for use in risk assessments for nuclear power plants.