ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. C. Helton,* R. L. Iman, J. D. Johnson,+, C. D. Leigh
Nuclear Technology | Volume 73 | Number 3 | June 1986 | Pages 320-342
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A16075
Articles are hosted by Taylor and Francis Online.
An uncertainty and sensitivity analysis of the MAEROS model for multicomponent aerosol dynamics is presented. Analysis techniques based on Latin hypercube sampling and regression analysis are used to study the behavior of a two-component aerosol in a nuclear power plant containment for a transient accident with loss of alternating current power (i.e., a TMLB’ accident). Conditional on assumed ranges and distributions for selected independent variables (e.g., initial distributions and mass loadings for each component, temperature, pressure, shape factors), estimates are made for distributions of model predictions and for the independent variables that influence these predictions. The analysis indicated that, for the situation under consideration, variables related to agglomeration (e.g., dynamic shape factor, material density, agglomeration shape factor, and turbulence dissipation rate) tended to dominate the observed variability. For comparison, an analysis based on differential techniques is also given. Furthermore, a study of the effects on MAEROS predictions due to the number of particle size classes and the particle size class boundaries is presented. This analysis was performed as part of a project to develop a new system of computer codes (i.e., the MELCOR code system) for use in risk assessments for nuclear power plants.