ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Kenneth C. Okafor, Tunc Aldemir
Nuclear Technology | Volume 81 | Number 3 | June 1988 | Pages 381-392
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A16059
Articles are hosted by Taylor and Francis Online.
An empirical core model construction procedure for pressurized water reactor (PWR) in-core fuel management problems is presented that (a) incorporates the effect of composition changes in all the control zones in the core on a given fuel assembly, (b) is valid at all times during the cycle for a given range of control variables, (c) allows determining the optimal beginning of cycle (BOC) k∞ distribution as a single linear programming problem, and (d) provides flexibility in the choice of the material zones to describe core composition. Although the modeling procedure assumes zero BOC burnup, the predicted optimal k∞ profiles are also applicable to reload cores. In model construction, assembly power fractions and burnup increments during the cycle are regarded as the state (i.e., dependent) variables. Zone enrichments are the control (i.e., independent) variables. The model construction procedure is validated and implemented for the initial core of a PWR to determine the optimal BOC k∞ profiles for two three-zone scatter loading schemes. The predicted BOC k∞ profiles agree with the results of other investigators obtained by different modeling techniques.