ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Kenneth C. Okafor, Tunc Aldemir
Nuclear Technology | Volume 81 | Number 3 | June 1988 | Pages 381-392
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A16059
Articles are hosted by Taylor and Francis Online.
An empirical core model construction procedure for pressurized water reactor (PWR) in-core fuel management problems is presented that (a) incorporates the effect of composition changes in all the control zones in the core on a given fuel assembly, (b) is valid at all times during the cycle for a given range of control variables, (c) allows determining the optimal beginning of cycle (BOC) k∞ distribution as a single linear programming problem, and (d) provides flexibility in the choice of the material zones to describe core composition. Although the modeling procedure assumes zero BOC burnup, the predicted optimal k∞ profiles are also applicable to reload cores. In model construction, assembly power fractions and burnup increments during the cycle are regarded as the state (i.e., dependent) variables. Zone enrichments are the control (i.e., independent) variables. The model construction procedure is validated and implemented for the initial core of a PWR to determine the optimal BOC k∞ profiles for two three-zone scatter loading schemes. The predicted BOC k∞ profiles agree with the results of other investigators obtained by different modeling techniques.