ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Robert W. Terhune
Nuclear Technology | Volume 15 | Number 3 | September 1972 | Pages 431-446
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT72-A16040
Articles are hosted by Taylor and Francis Online.
Project Wagon Wheel is a joint study by Lawrence Livermore Laboratory (LLL) and El Paso Natural Gas Company (EPNG) to investigate the technical concept of nuclear stimulation of a natural gas reservoir located near Pinedale, Wyoming. Laboratory stress-strain deformation measurements on core samples taken from EPNG Wagon Wheel hole No. 1 (at a depth between 8000 and 12 000 ft) show that the shear failure envelope for Wagon Wheel sandstone is almost identical to that for Hoggar granite. A calculation for Wagon Wheel sandstone for 1-kt energy at a depth of 300 m duplicated cavity radius, shear fracture radius, stressed region, peak particle velocity, and peak acceleration data measured from the nuclear experiments conducted in the Hoggar granite by the French. The conclusion drawn from this comparison is that the Hoggar granite chimneys and regions of increased permeability provide a reasonable model to assume for Wagon Wheel. A single explosive detonated at a depth of 10 000 ft is predicted to produce a cavity radius of 5.77 W1/3 (m,kt1/3), with shear fractures ex tending out to 2.5 cavity radii followed by a stressed region to 5 cavity radii. The expected chimney will have a radius of 1.2 cavity radii and a height of 2.5 cavity radii above the shot point, resulting in an apical void at the top representing about 50% of the cavity volume. Large increase in permeability is expected only within the region of shear fracture. Chimney height for multiple detonations is expected to be 4 cavity radii based on a rubble porosity of 21%. Explosive spacing for multiple simultaneous detonations varies from a minimum of 5 cavity radii (tangent chimneys) to 7.0 cavity radii based on maximum fracture increase due to shock interaction. Explosive spacing for sequential detonation varied between 7.5 and 12.5 cavity radius based on the similarity between cratering phenomenology (reflecting a shock from the ground surface) and reflecting a shock off the apical void of a previously formed chimney. It is expected that a permeable annular ring will form around the axis between the two explosives to connect the lower chimney with the cavity above.