ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. P. Matsen
Nuclear Technology | Volume 15 | Number 3 | September 1972 | Pages 343-358
Technical Paper | Reactor | doi.org/10.13182/NT72-A16032
Articles are hosted by Taylor and Francis Online.
A technique for obtaining cross-section information from experimental isotopic concentration data has been applied to the data from Yankee Core I. The technique involves making a least-squares fit of appropriate transmutation equations to the data. The analysis covers two transmutation chains. One is the plutonium chain which begins with 238U and ends with americium and curium. The other is a rarer isotope chain which begins with 235U or 238U and ends with neptunium and plutonium. Values were obtained for 12 ratios determined by the leastsquares analysis (e.g., 25 = 0.2569 ± 0.0023 and 49 = 0.622 ± 0.082). In order to obtain information about the less abundant transuranium isotopes, 15 Yankee Core I samples were analyzed for their isotopic content. The ratios of effective cross sections were also deduced from the data.