ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Yasushi Takeda
Nuclear Technology | Volume 79 | Number 1 | October 1987 | Pages 120-124
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT87-A16010
Articles are hosted by Taylor and Francis Online.
The ultrasound velocity profile monitor has been developed. It utilizes the pulsed echo techniques of ultrasound, and it can measure the velocity profile quasi-instantaneously. Its applicability to flow in mercury was investigated, and measurements for bifurcating flow in a T tube were made. Profiles were obtained for different configurations of measuring lines and flow directions, and lengths of flow fields were evaluated and compared with the pipe lengths. Results showed good agreement, implying that the method can measure the velocity profile in liquid-metal flows successfully.