ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Douglas R. Smith, Robert W. Albrecht
Nuclear Technology | Volume 79 | Number 1 | October 1987 | Pages 35-50
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A16003
Articles are hosted by Taylor and Francis Online.
A recent development in passive safety devices for advanced liquid-metal reactors is the installation of manometerlike core assemblies called gas enhancement modules (GEMs). Knowledge of the liquid sodium level within the GEMs is required to monitor GEM operation. A microwave, resonant cavity level measurement technique has been laboratory tested on a scale model of a GEM assembly in a nonsodium environment. The theory behind this method is discussed, and the experimental results are shown to compare well with those predicted by theoretical calculation. The resonant cavity level detector tracked extremely well over the desired 0.1524- to 1.1176-m range of operation and provided accurate, reproducible results well within the desired ±25.4-mm actual level. When tested for vibrational stability, level errors of only 0.254 mm were observed. The effects of material differences between the experimental GEM (copper) and the actual GEM (Type 304 stainless steel) are calculated. The actual GEM will have poorer resolution but still be within ±25.4-mm actual level. Temperature effects are also calculated and produce a 10.5 kHz/°C shift in resonant frequency, which could cause the indicated level to exceed the ±25.4 mm allowed if large (∼149°C) temperature changes occur.