ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
M. A. Malik
Nuclear Technology | Volume 75 | Number 1 | October 1986 | Pages 66-72
Technical Paper | Fuel Cycle | doi.org/10.13182/NT86-A15977
Articles are hosted by Taylor and Francis Online.
A comprehensive interactive computer program for strategic studies of the light water reactor (LWR) fuel cycle has been developed, incorporating simple models for estimating material flow, correlations for discharge fuel composition (as a function of core enrichment, burnup, fuel-to-moderator ratio, and number of batches), algorithms for nuclear fuel cycle economic computations, and an ore resource/cost relationship. These models have been linked together to yield fuel cycle cost equations, in terms of the unit cost of each process step, in a form suitable for estimation of breakeven costs and for sensitivity analyses. The program has been employed in a number of case studies to evaluate the impact of the introduction of the recycle mode, extended burnup, more batches in the core, low-enrichment-cost technologies, and a reduction in enrichment plant tails assay. It is concluded that LWRs in the United States will be operated in the once-through fueling mode for many decades into the future unless a radical technological breakthrough leading to a substantial reduction in reprocessing cost can be effected. The computer program developed in the present work can be used to evaluate this and other alternative scenarios, involving different cost projections of the user’s choosing.