ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Bernard L. Cohen
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 433-440
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A15969
Articles are hosted by Taylor and Francis Online.
The 1983 report of the Waste Isolation Systems Panel of the National Academy of Sciences (referred to as NAS-83) introduces a solubility limited dissolution (SLD) theory to estimate release rates from highlevel radioactive waste packages. It is pointed out that this theory, as presented, should apply equally well to each grain of average rock, but that when applied to that problem, it overpredicts the observed dissolution rate of SiO2 by seven orders of magnitude. The SLD theory also predicts that cesium and other trace elements are leached out of rock grains orders of magnitude more rapidly than the SiO2; it is shown that this is clearly contrary to the experimentally observed situation. Other shortcomings of the NAS-83 treatment are pointed out. Modifications to the theory that avoid these large discrepancies are suggested; when applied to the waste problem, they pose some very important questions that should be answered before proceeding with waste management problems. For example, they suggest that reprocessing may reduce the hazards from waste by a factor of 10 million, and that synroc may be millions of times more secure against leaching than waste glass.