ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Robert P. Wichner, Roger D. Spence
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 376-393
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A15964
Articles are hosted by Taylor and Francis Online.
The degree of vaporization of light water reactor core materials was estimated using a highly idealized procedure involving (a) specification of the phases that are present for both structural and fuel material, (b) estimation of the vapor pressures exerted by the individual components of each phase, and (c) assuming a degree of vaporization of each phase constituent, allowing equilibration between gaseous and condensed species within the assumed pressure vessel volume. Using this procedure, the aerosol was estimated to consist mainly of silver, indium oxide, cesium hydroxide, and cadmium for pressurized water reactors and cesium hydroxide, cesium iodide, and tellurium for boiling water reactors. If boron is included in the thermodynamic estimate, then boron will significantly alter or dominate the composition of the aerosol in the form of boron oxide and cesium borate. The structural materials make up <9% of the aerosol at 36 to 57 kg, but this figure is in good agreement with estimates from severe accident sequence analysis studies (17 kg) and from Parker (10.7 kg). The SASCHA data are used in NUREG-0772 and give much higher estimates at 295 and 250 kg.