ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Alex Galperin, Meir Segev, Anatoly Goldfeld, Yonathan Karni
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 354-363
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A15962
Articles are hosted by Taylor and Francis Online.
The independently developed and verified computational system BGUCORE for the neutronic analysis of pressurized water reactor cores is introduced. The basic methodology adopted generates cross-section libraries for each fuel type as functions of burnup and soluble boron concentrations. These cross sections are arranged as a two-dimensional matrix of sets, each set corresponding to a particular burnup/boron pair of coordinates. The two-dimensional diffusion analysis of the reactor core utilizes the pregenerated libraries by interpolating between burnup and boron entry points. The present system is especially designed for the analysis of cores with burnable poisons. Such cores are characterized by strong heterogeneity and selfshielding effects. Detailed benchmark calculations, performed for cycle 1 of the Zion 2 power station, validate the performance of the BGUCORE system. Further development of the system, aimed at creating a comprehensive design and fuel cycle analysis tool, includes a three-dimensional representation of the core and thermohydraulic modules.