ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alex Galperin, Meir Segev, Anatoly Goldfeld, Yonathan Karni
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 354-363
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A15962
Articles are hosted by Taylor and Francis Online.
The independently developed and verified computational system BGUCORE for the neutronic analysis of pressurized water reactor cores is introduced. The basic methodology adopted generates cross-section libraries for each fuel type as functions of burnup and soluble boron concentrations. These cross sections are arranged as a two-dimensional matrix of sets, each set corresponding to a particular burnup/boron pair of coordinates. The two-dimensional diffusion analysis of the reactor core utilizes the pregenerated libraries by interpolating between burnup and boron entry points. The present system is especially designed for the analysis of cores with burnable poisons. Such cores are characterized by strong heterogeneity and selfshielding effects. Detailed benchmark calculations, performed for cycle 1 of the Zion 2 power station, validate the performance of the BGUCORE system. Further development of the system, aimed at creating a comprehensive design and fuel cycle analysis tool, includes a three-dimensional representation of the core and thermohydraulic modules.