ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jiro Wakabayashi, Shin-Ichi Tashima, Akio Gofuku
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 343-353
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A15961
Articles are hosted by Taylor and Francis Online.
Two kinds of identification techniques for the diagnosis of disturbances in nuclear power plants have been proposed, and the applicability of these techniques to actual plants has been verified by computer experiments. In both techniques, a set of the observed signals (observed vector) obtained from an actual plant is identified with one of the categories representing a normal state, several anticipated anomalous situations, and an unanticipated anomalous state, in which the categories corresponding to the anticipated anomalous situations are classified by the kind and approximate magnitude of the anomaly source (the disturbance). The maximum likelihood technique is used in method 1. It applies to the identification of multiple anticipated disturbances that happen sequentially with some time interval, even if a plant has some nonlinear characteristics. The projective operator technique is used in method 2. It applies to the identification of any kind of multiple anticipated disturbances under the conditions of the plant having approximately linear characteristics and the observed vectors corresponding to the anticipated disturbances are linearly independent of each other.