ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Yasuhide Senda, Seiji Shiroya, Masatoshi Hayashi, Keiji Kanda
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 318-334
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A15959
Articles are hosted by Taylor and Francis Online.
The results of analyses on the void reactivity measurements performed in the Kyoto University Critical Assembly using medium-enriched uranium fuel as well as highly enriched uranium fuel are provided. In consideration of the heterogeneity of a complex core, four-group constants were generated by SRAC, a standard thermal reactor code system for reactor design and analysis at the Japan Atomic Energy Research Institute. The eigenvalue and perturbation calculations were subsequently performed by the 2D-FEM-KUR code, which is a two-dimensional diffusion code based on the finite element method. The calculated eigenvalue keff agreed with the measured value to within 0.5% in the calculated-to-experiment ratio. The void reactivity calculated by perturbation theory approximately reproduced the experimental data including the spatial dependence. The discrepancy between the calculated and measured void reactivity was <0.05 × 10−3 Δ k / k per voided flow channel.