ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Robert L. Hirsch, Donald S. Beard
Nuclear Technology | Volume 27 | Number 1 | September 1975 | Pages 84-91
Technical Paper | Education | doi.org/10.13182/NT75-A15940
Articles are hosted by Taylor and Francis Online.
The prospect for creating a new source of energy through the fusion of light nuclei now appears excellent. Recent experimental results in the heating and stabilization of magnetically confined plasmas have confirmed a number of important theoretical predictions, providing a theoretical and experimental base on which will be built new and larger experimental systems to produce reactor-grade energy-producing fusion plasmas. In addition, plans are being established worldwide to vigorously attack the serious engineering tasks necessary to develop practical fusion power. The U.S. has planned a fusion power development program aimed at the substantial production of fusion energy on an experimental scale in the early 1980’s, and a demonstration of the commercial production of fusion power in the mid to late 1990’s. An essential ingredient in the fusion development plan will be the training of appropriate scientific and technical manpower. In examining the need for fusion-trained nuclear engineers, it is projected that an additional 120 to 250 engineers at the MS and PhD levels will be needed between now and 1980. To be most effective, these graduates must not only be trained in the “classic” physical, nuclear, mechanical, and electrical sciences, but they will need specialized training in fusion plasma physics and fusion materials science. To help develop the appropriate educational programs, close cooperation between U.S. Energy Research and Development Administration (ERDA) headquarters, ERDA laboratories, private industry, and the universities will be essential. An emerging need for a carefully structured “fusion technology” option in nuclear engineering departments is plainly evident and is already beginning to be developed at leading institutions.