ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Gordon L. Brownell, Brian W. Murray
Nuclear Technology | Volume 27 | Number 1 | September 1975 | Pages 60-66
Technical Paper | Education | doi.org/10.13182/NT75-A15937
Articles are hosted by Taylor and Francis Online.
Nuclear engineering has much to offer nuclear medicine, diagnostic radiology, and radiation therapy, since advances in these medical specialities require complex applications of radiation. In return, these specialties offer rewarding and stimulating careers to nuclear engineers and physicists. Nuclear engineering students are aptly qualified for research training in these areas because of their knowledge of nuclear physical principles, their engineering experience, and their desire to apply their training to socially constructive activities. Training programs should include the training of technologist’s and bachelor’s degree candidates as well as research personnel at the MS and PhD level. Although the full scope of such a program is yet to be realized at the Massachusetts Institute of Technology (MIT), several courses and seminars devoted to biomedical applications of radiation within the Department of Nuclear Engineering and a number of interdepartmental programs support the training in biomedical physics and engineering. The research training of students within these fields is challenging and complex since a working collaboration with clinicians and scientists needs to be established while still preserving an individual research program for the student. At MIT, a number of research projects involving the medical use of neutrons and radioisotopes help provide the facilities and support for thesis programs for several students. These projects include 10B neutron-capture therapy in the treatment of brain tumors, in vivo and in vitro neutron activation analysis to study metabolic bone diseases in man and animals, external localization of deep vein clots in man using radioiodinated fibrinogen, improved techniques for radiation synovectomy in the treatment of rheumatoid arthritis, and the development of ultra-short-lived radioisotopes for nuclear medicine. Based on the experience at MIT, nuclear engineering can play a vital role in training research personnel for nuclear medicine, diagnostic radiology, and radiation therapy. Any individual nuclear engineer wishing to engage in the training of students for such fields should establish a close rapport with research scientists and clinicians within a medical institution and be familiar with the medical resources available for such training.