ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Glenn Murphy
Nuclear Technology | Volume 27 | Number 1 | September 1975 | Pages 11-14
Technical Paper | Education | doi.org/10.13182/NT75-A15930
Articles are hosted by Taylor and Francis Online.
With the realization that nuclear energy had a vast potential for peacetime development, universities throughout the country began to develop courses in nuclear energy. A pioneering educational effort was necessary because there were an inadequate number of trained faculty, no established curricula, no textbooks, and very little suitable equipment. Nevertheless, by the early 1950’s, several programs in nuclear science and engineering were beginning to provide instruction to potential nuclear engineers. At that time, the American Society for Engineering Education (ASEE) established a nuclear committee to cooperate with the U.S. Atomic Energy Commission (AEC) in nuclear education matters. With the financial support of the AEC, textbook material was developed, faculty training programs were instituted, and funds were made available for equipment. Because of the large interest shown in the field, many colleges and universities began to develop nuclear engineering curricula. After a few years, the need arose for general guidelines in curricular development. This led to the development of a Committee on Objective Criteria in Nuclear Engineering Education in which ASEE and the American Nuclear Society cooperated with the support of AEC. The committee report emphasized basic science, nuclear energy concepts, and nuclear technology, which have continued to be the significant components of a nuclear engineering curriculum. The last ten years have brought increased emphasis on BS programs, the introduction of extensive computer-based instruction, and an increasing emphasis on the engineering aspects of nuclear reactor power systems.