ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
N. P. Goldstein, K. H. Sun, J. L. Gonzalez
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 328-336
Technical Paper | Analysis | doi.org/10.13182/NT74-A15925
Articles are hosted by Taylor and Francis Online.
The U.S. Atomic Energy Commission is presently considering lowering the limits of radioiodine release from nuclear power plants by a factor of 30 000 below the current levels listed in its Federal Regulations. This proposed limit corresponds to an environmental concentration of 3 × 10 −15 µCi/ml of air for 131I,with somewhat similar values for other iodine isotopes. This represents a very small amount of radioactivity, corresponding to ∼1 dis/sec in a cube of air 95 ft on a side. We have carried out experiments to determine the lowest radioiodine concentrations that can be measured using high volume collection of air in triethyldiamine-impregnated charcoal and by counting the adsorbed radioactivity with a shielded Ge(Li) counter. For this purpose, we have measured the concentrations of 131I and 133I in air at the fence line of a large boiling-water-reactor plant and obtained 7.6 × 10 −14 and 2.9 × 10−14 µCi/ ml, respectively. In addition, concentration of 131I in the form of fallout at Pittsburgh, Pennsylvania, two weeks after the Chinese nuclear bomb test of June 27, 1973, was found to be 4.6 × 10−15 µCi/ml. The main limitation in the ultimate sensitivity of measurements of this sort lies in the statistical separation of the signal from the background. From our results, we have estimated that 131I and 133 I peaks at the proposed U.S. Atomic Energy Commission limit can be separated from the background with standard deviations of 15 and 30%, respectively, using a total of 7 days for collection and counting. The corresponding figures for a modern state-of-the-art Ge(Li) detector were shown to be 7% for 131I and 15% for 133I. In addition, our measurements possess systematic errors totaling ∼20%.