ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
H. Bairiot, L. Aerts, E. Trauwaert, J. Vangeel
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 240-255
Technical Paper | Fuel | doi.org/10.13182/NT74-A15917
Articles are hosted by Taylor and Francis Online.
The economics of the plutonium fueling of a thorium-cycle high temperature gas-cooled reactor (HTGR) have been investigated. This study showed that once-through cycles are more profitable than cycles with the 233U recycling in the fissile particles and cycles with the 233U recycling in the fertile particles, if limitation of age factors are applied and if core power densities are fixed. There is an economic advantage in using plutonium in once-through cycles once its price drops below 9 $/g Puf. The highest plutonium loading per particle provides the most attractive fuel cycle cost during the initial period when the fabrication costs are high. In the first irradiation test, which was carried out in the R 2 reactor (Studsvik-Sweden), burnups of 200 000 MWd/MTM 360 000 MWd/MTM at temperatures of 1850 and 1200°C were reached. In a second test, the center rods of two DRAGON reactor fuel elements were built with plutonium fuel. After irradiation equivalent to 224 days at full power, there was no damage to the particles. Finally, three batches of particles with diluted and undiluted kernels were irradiated during 45 equivalent full power days by KFA/Jülich. The postirradiation results were consistent with no fission gas release and no breakage event. A migration of plutonium occurred to a small extent up to the SiC layer in some of the particles.