ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Jack L. McElroy, Albert G. Blasewitz, Kenneth J. Schneider
Nuclear Technology | Volume 12 | Number 1 | September 1971 | Pages 69-82
Technical Paper | Radioactive Waste | doi.org/10.13182/NT71-A15900
Articles are hosted by Taylor and Francis Online.
Demonstration of the solidification of high-level radioactive waste by the pot, spray, and phosphate glass solidification processes has been successfully completed by Battelle-Northwest. More than 50 million curies of radionuclides were processed and collected in 6-, 8-, and 12-in. diam containers during 33 engineering-scale demonstration runs in the Waste Solidification Engineering Prototypes (WSEP). The maximum self-generating heat rate values in the solidified wastes for an 8-in.-diam pot ranged from 205 W/liter for the spray solid to 85 W/ liter for the pot calcine. Wastes equivalent to those from thermal power reactors with exposures as high as 45 000 MWd/MT at 30 MW/MT were demonstrated. The WSEP auxiliary equipment consisting of an evaporator, an acid fractionator, filters, and a caustic scrubber reduced radionuclides in the stack gas to well below government release limits. The final liquid effluent from WSEP contains radioruthenium that is 104 to 106 times allowable government release values. Strontium and other nonvolatile materials are present to a much smaller extent. Initial studies indicated that the effluent water and acid streams from the waste solidification processes are sufficiently low in volume and radioactivity that they can be reasonably recycled into the fuel reprocessing plant operation. The pots of solidified wastes from the WSEP runs are undergoing testing to determine the effects of storage temperature (air or water), radiation, and feed type on the physical and chemical properties of the solidified wastes.