ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. Elias, F. J. Munno
Nuclear Technology | Volume 12 | Number 1 | September 1971 | Pages 46-55
Technical Paper | Fuel | doi.org/10.13182/NT71-A15897
Articles are hosted by Taylor and Francis Online.
The computational system, 2DBCOST, efficiently determines optimum fast reactor fuel management strategies. 2DBCOST, including the associated optimization technique used, provides a basis on which to study the impact of variables such as fabrication, reprocessing, shipping, interest, fuel handling, material costs, inventory lead times, and post-irradiation lag times on reactor fuel costs and to subsequently determine the lowest cost operating policy. The computational system will adjust an LMFBR fuel management policy to meet changing economic or marketplace conditions. Trial use has shown that the code will rapidly determine an optimum fast-reactor blanket fuel management scheme for the cases studied. The impact of both blanket radial out-in subassembly movement and moderator seeding was investigated. Cost penalties associated with moving six sub-assemblies per cycle less than the optimum will approach three million dollars over a 10-year period; similar savings are demonstrated with respect to moderator seeding. The objective function is shown to be unimodal.